Soil and Surface Wipe Sampling Summary Report: Jenkintown and Abington Friends Schools

SPS Technologies
Jenkintown

April 14, 2025

Prepared for:

SPS Technologies

Prepared by:

TRC Environmental Corporation, Inc. 1617 JFK Boulevard, Suite 510 Philadelphia, PA 19103

SPS Technologies – Jenkintown, PA

School Soil and Surface Wipe Sampling Summary Report

Table of Contents

1.0	Ex	recutive Summary	1
2.0	Sc	oil and Wipe Sampling	3
2	.1	Sampling Program and Objectives	3
2	2	Soil Sampling and Analyses Means and Methods	5
	2.2.	1 Sample Collection	5
	2.2.2	2 Sample Handling and Preservation	5
	2.2.3	3 Quality Assurance	5
	2.2.4	4 Analytical Parameters	5
	2.2.	5 PADEP Standards	6
2	3	Wipe Sampling Means and Methods	6
	2.3.	1 Sample Collection	6
	2.3.2	2 Sample Handling and Preservation	6
	2.3.3	3 Quality Assurance	6
	2.3.4	4 Analytical Parameters	6
	2.3.	5 Selected Reference Standard(s)	6
3.0	Sc	oil and Surface Wipe Sample Collection Sites	8
3	3.1	Jenkintown Schools	8
3	.2	Abington Friends School	. 10
3	.3	Wall Park	. 12
3	.4	The Cheese Playground	. 14
4.0	Aı	nalytical Results	. 16
4	.1	Soil Sample Analytical Results	. 16
4	.2	Soil Sampling Data Evaluation	. 16
4	.3	Wipe Sample Analytical Results	. 17
4	.4	Wipe Sampling Data Evaluation	. 17

SPS Technologies - Jenkintown, PA

School Soil and Surface Wipe Sampling Summary Report

Figures

School and Background Sampling Locations
Jenkintown Schools (JS) Soil and Surface Wipe Sampling Locations
Abington Friends School (AF) Soil and Surface Wipe Sampling Locations
Wall Park (Background A; BA) Soil and Surface Wipe Sampling Locations
The Cheese Playground (Background B; BB) Soil Sampling Locations

Tables

Table 1	Sample Summary	Table

Table 2 Soil Sampling Consolidated Results - Results Above PADEP Act 2 Standards for Residential

Direct Contact

Appendices

Appendix A	Soil Analytical Results for Jenkintown Schools (JS)
Appendix B	Soil Analytical Results for Abington Friends School (AF)
Appendix C	Soil Analytical Results for Wall Park (Background Location A)
Appendix D	Soil Analytical Results for The Cheese Playground (Background Location B)
Appendix E	Surface Wipe Analytical Results for Jenkintown School
Appendix F	Surface Wipe Analytical Results for Abington Friends School
Appendix G	Surface Wipe Analytical Results for Wall Park (Background Location A)
Appendix H	Surface Wipe Analytical Results for The Cheese Playground (Background Location B)

1.0 Executive Summary

On March 17, 2025, TRC Environmental Corporation (TRC) initiated soil and surface wipe sampling in accordance with "Proposed Fire Response Dust and Soil Investigation Work Plan – Abington Friends School (March 14, 2025) and Proposed Fire Response Dust and Soil Investigation Workplan – Jenkintown School (March 14, 2025); collectively referred to in this document as Workplans). The sampling was conducted at the request of officials from Jenkintown School and Abington Friends School (Schools), which are in the vicinity of the fire that began at the SPS Jenkintown manufacturing facility on February 17, 2025.

Soil and surface wipe samples were collected from the Schools and from background areas not anticipated to have been affected by the fire. As noted in the Workplans, two discrete soil samples were collected from three different areas at each school from the top 1 inch of soil and bottom 1-6 inches of soil. Surficial wipe samples were also collected from three different pieces of playground equipment at each school.

Additionally, two discrete soil samples were collected from two background locations (Wall Park in Elkins, Park, PA and The Cheese Playground in Glenside, PA) from the top 1 inch of soil and bottom 1-6 inches of soil. Surface wipe samples were also collected from three different pieces of playground equipment at each background location.

Soil and surface wipe samples were analyzed for compounds that could potentially represent markers of combustion emissions and for certain additional compounds based on concerns expressed by school officials and the public. Soils were analyzed for polycyclic aromatic hydrocarbons (PAHs), various metals, total and free cyanide, and asbestos. Wipe samples were analyzed for PAHs.

The results of soil samples were compared to Pennsylvania Department of Environmental Protection (PADEP) Residential Direct Contact numerical values established under the Pennsylvania Land Recycling and Environmental Remediation Standards Act (Act 2). As discussed in Section 2.2, the Act 2 values are health-based that were criteria selected for screening purposes due to the conservative nature of the risk assumptions made by PADEP in establishing the numerical values. The background samples were collected to determine whether the constituents present represent background conditions. The results for surface wipe samples were compared to the Contaminants of Potential Concern (COPC) framework for indoor dust developed after the World Trade Center collapse, as modified for outdoor dust, as discussed in Section 3.2.5 below.

Soil results confirm the SPS fire did not distribute measurable amounts of PAHs, metals, cyanide or asbestos to the Schools. Cyanide and asbestos were not detected in any soil sample. PAHs and metals concentrations were below PADEP screening values except for arsenic, which was slightly elevated in some samples. Arsenic is present in soils throughout Pennsylvania due to naturally occurring minerals and/or to historical activities such as pesticide application or the use of pressure-treated wood. Based on the comparison of the concentrations detected at the

School Soil and Wipe Sampling Summary Report

background sample locations and in the deeper soil samples, TRC concludes that the PAH and metals concentrations, including arsenic, are representative of background conditions.

Surface wipe sampling results also confirm that there is no discernible impact from the SPS fire at the Schools. PAH concentrations were uniformly below the limits of laboratory detection and below all relevant health-based screening levels.

2.0 Soil and Wipe Sampling

2.1 Sampling Program and Objectives

In accordance with the Workplans, soil samples were collected at two schools: Jenkintown School and Abington Friends School (Schools) and two background locations: Wall Park and The Cheese Playground. Background locations were selected outside of the affected area based on the prevailing wind direction during the fire and one of the background areas exhibits the same geology as the Schools.

Soil samples were collected at three areas at Jenkintown School and Abington Friends School, four locations at Wall Park, and three locations at The Cheese Playground. Samples were collected from the top 1 inch of soil and bottom 1-6 inches of soil.

In accordance with the Workplan, surface wipe samples were collected at three areas at Jenkintown School, Abington Friends School, Wall Park, and The Cheese Playground. Samples were collected from playground equipment and other community surfaces.

The locations of the four sites in relation to SPS are shown in Figure 1.

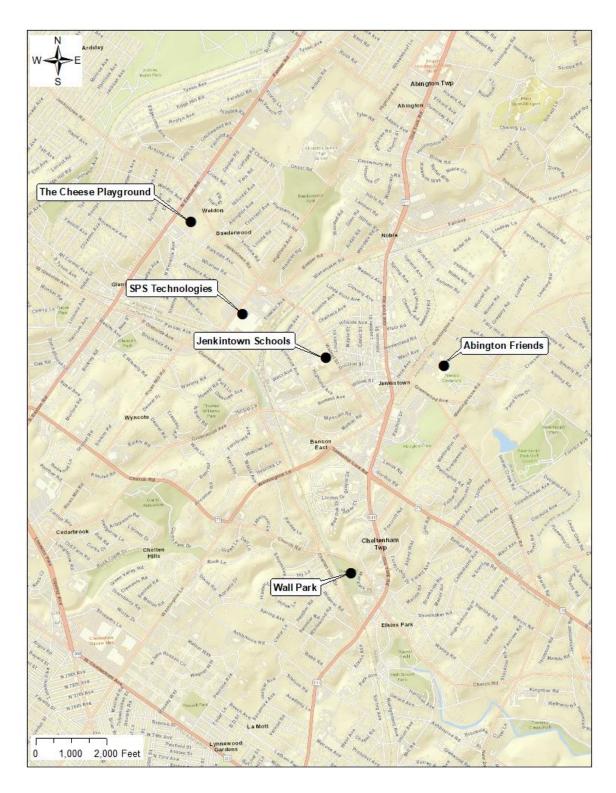


Figure 1: School and Background Sampling Locations

2.2 Soil Sampling and Analyses Means and Methods

2.2.1 Sample Collection

Soil samples were collected using a stainless-steel core sampler. The core sampler was cleaned before and after each sample collection. Cleaning was performed by using a laboratory-grade phosphate-free detergent solution followed by a tap water rinse and then followed by a distilled water rinse.

2.2.2 Sample Handling and Preservation

Soil samples were placed into laboratory-supplied containers. The sample containers were promptly placed in a cooler and preserved on ice. Samples were transported to the laboratory under Chain of Custody (COC).

Each sample was logged onto the COC and included sample identification (ID), date and time of sample collection, requested analytical parameters, sampler name and signature, and laboratory instructions as appropriate. The samples were transferred from field persons to laboratory personnel under signature of release and acceptance.

2.2.3 Quality Assurance

One duplicate sample was collected for the purpose of evaluating precision and accuracy. One Matrix Spike (MS) and one Matrix Spike Duplicate (MSD) with site-specific media, specifically the clayey soil found at the school sites, was collected for the purpose of assessing soil matrix effects.

Level 2 Data Validation was performed on all data. The data were all found to be usable.

2.2.4 Analytical Parameters

Each soil sample was analyzed for:

- Polycyclic Aromatic Hydrocarbons (PAHs) EPA SW846 Method 8270E SIM
- Metals EPA SW-846 Method 6020B/7471B (TAL Metals, which includes Mercury)
- Total Cyanide EPA SW-846 Method 9012B
- Free Cyanide Kelada-01 (via MJ Reider)
- Asbestos by EPA 600/R-93/116 (PLM for screening absence/presence)
- Asbestos by EPA ASTM D7521-16 method (TEM for asbestos concentration only if asbestos detected by PLM)*

^{*}Since no detectable asbestos was above the target level of one percent (1%), no TEM analyses were performed.

2.2.5 PADEP Standards

Soil sampling results were compared to Residential Direct Contact (0-15 feet) numerical values presented in Table 3a for organic constituents and Table 4a for inorganic constituents established as Medium Specific Concentrations established by Pennsylvania Department of Environmental Protection (PADEP) Land Recycling and Environmental Remediation Standards Act (Act 2).

2.3 Wipe Sampling Means and Methods

2.3.1 Sample Collection

For each piece of playground or community equipment, a 200cm² area (marked by laboratory-provided template squares) was wiped with a prewet methanol wipe.

2.3.2 Sample Handling and Preservation

Each area chosen for surface wipe sample collection was wiped horizontally to cover the entirety of the area, the wipe folded, then wiped vertically before being placed into the laboratory-supplied containers and labeled. The sample containers were promptly placed in a cooler and preserved on ice. Samples were transported to the laboratory under Chain of Custody (COC).

Each sample was logged onto the COC and included sample identification (ID), date and time of sample collection, requested analytical parameters, sampler name and signature, and laboratory instructions as appropriate. The samples were transferred from field persons to laboratory personnel under signature of release and acceptance.

2.3.3 Quality Assurance

One blank sample that did not contact any surfaces, but was handled in the same manner as the other wipes was collected and analyzed.

Surrogate samples were run by the laboratory for the purpose of evaluating percent recoveries.

Level 2 Data Validation was performed on all data. The data were all found to be usable.

2.3.4 Analytical Parameters

Each wipe sample was analyzed for:

PAHs – EPA SW846 Method 8270E SIM

2.3.5 Selected Reference Standard(s)

Following the collapse of the World Trade Center (WTC) in 2001, the U.S. Environmental Protection Agency (EPA) and collaborating agencies developed the COPC framework to assess

School Soil and Wipe Sampling Summary Report

indoor settled dust contamination. These guidelines were designed with an emphasis on protecting children, the most sensitive population, due to their higher frequency of hand-to-mouth activity, lower body weight, and greater time spent indoors. The framework established risk-based screening levels for PAHs and other contaminants in indoor environments. PAH benchmark concentrations were established based on the most sensitive PAH, benzo[a]pyrene (BaP), at an estimated 1×10^{-6} lifetime excess cancer risk for consistent with the dose-response recommended by ATSDR and CalEPA/OEHHA (ATSDR 2022; EPA 2003).

On February 27, 2025, the Center for Toxicology and Environmental Health (CTEH) issued a summary of an environmental survey involving air monitoring and outdoor surface wipe samples to characterize the chemical composition of particulates on surfaces near the SPS fire. While the original WTC benchmark for PAHs was developed specifically for indoor surfaces, CTEH adapted this benchmark for outdoor settings by applying an exposure adjustment factor of 6, calculated as the product of a 2.4-fold reduction in exposure frequency and a 2.6-fold reduction in exposure duration. This approach aligns with the U.S. EPA's derivation of surface screening levels for contaminants of potential concern (COPCs), which are based on Reasonable Maximum Exposure (RME) scenarios and public health practices elsewhere — including, but not limited to, the California Department of Public Health (CDPH 2022).

The WTC/COPC framework and conservative CTEH modification remains the most directly applicable and protective model for interpreting wipe sampling data collected from outdoor community and school settings. The screening levels derived through this approach provide a robust, health-protective standard for evaluating potential exposure to PAHs, particularly in settings where children may come into contact with surfaces.

3.0 Soil and Surface Wipe Sample Collection Sites

3.1 Jenkintown Schools

At Jenkintown Schools (JS), soil samples were collected from two depths (0-1 inch and 1-6 inches) at three (3) locations (JS-1, JS-2, and JS-3). JS-1 samples were collected near the circle entrance on the north side of the school, JS-2 samples were collected near the playground area, and JS-3 samples were collected near a future garden area. Surface wipe samples were collected from a covered bench on the east side of the playground (JS-Meth1-1A), a covered bench on the west side of the playground (JS-Meth1-2A), and a platform at the top a playground slide (JS-Meth1-3A). These locations are identified in **Figure 2**.

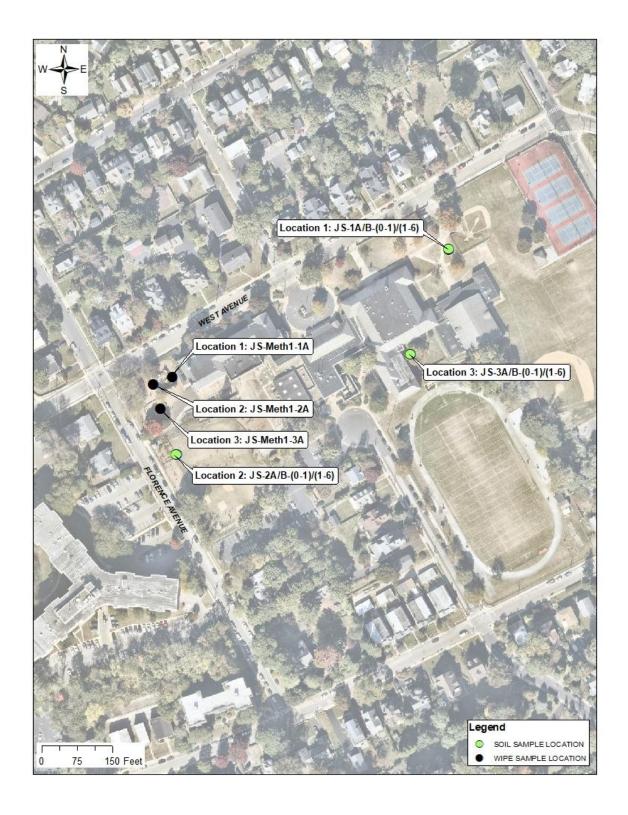


Figure 2: Jenkintown School Soil and Surface Wipe Sampling Locations

School Soil and Wipe Sampling Summary Report

3.2 Abington Friends School

At Abington Friends School (AF), soil samples were collected from two depths (0-1 inch and 1-6 inches) at three (3) locations (AF-1, AF-2, and AF-3). AF-1 soil samples were collected near the baseball fields to the south, AF-2 soil samples were collected near the playground areas to the north, and AF-3 soil samples were collected near the garden area to the east of the school. Surface wipe samples were collected from an enclosed green tube in the main playground area (AF-Meth1-1A), a play structure platform in the preschool play area (AF-Meth1-2A), and the floor of a red wooden playhouse (AF-Meth1-3A). These locations are identified in **Figure 3**.

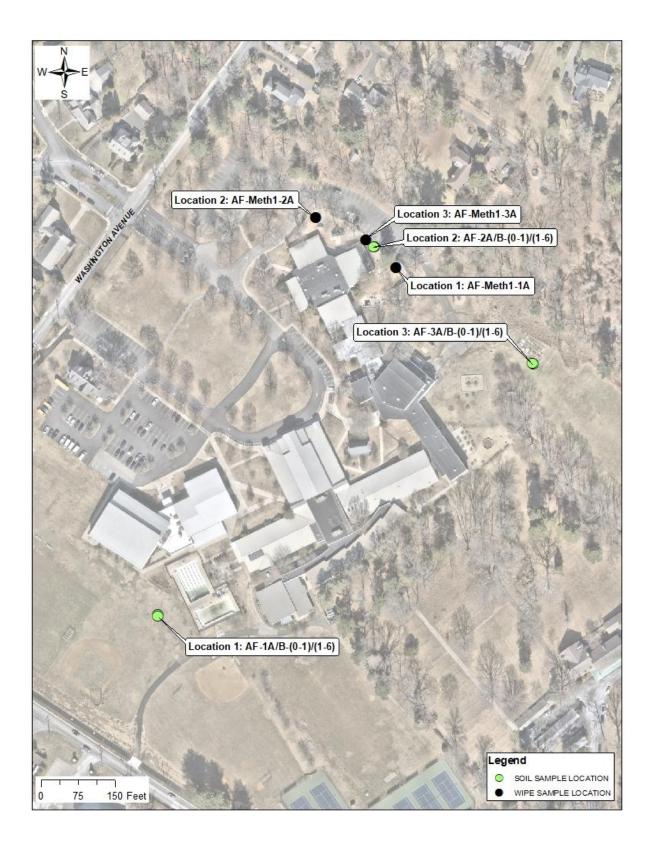


Figure 3: Abington Friends School (AF) Soil and Surface Wipe Sampling Locations

School Soil and Wipe Sampling Summary Report

3.3 Wall Park

At Wall Park (Background A; BA), soil samples were collected from two depths (0-1 inch and 1-6 inches) at four (4) locations (BA-1, BA-2, BA-3, and BA-4). BA-1 soil samples were collected near the tennis courts on the southeast side of the park, BA-2 soil samples were collected from near the west playground and restrooms, BA-3 soil samples were collected on the north side of the park near the fields, and BA-4 soil samples were collected near the fields and the north end of the east playground. Surface wipe samples were collected from an enclosed green slide near the playground entrance (BA-Meth1-1A), a playground tower (BA-Meth1-2A), and a painted picnic table in the shelter house (BA-Meth1-3A). These locations are marked in **Figure 4**.

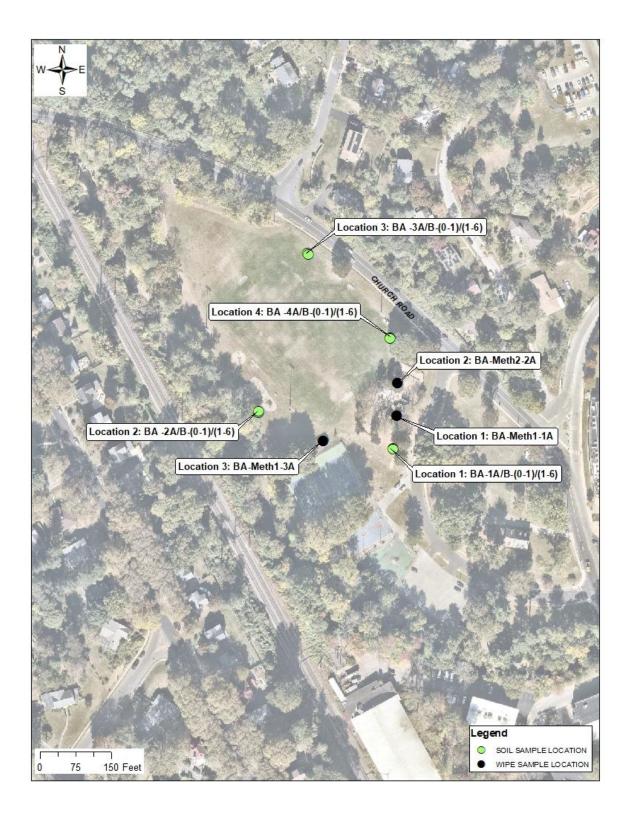


Figure 4: Wall Park (Background A; BA) Soil and Surface Wipe Sampling Locations

School Soil and Wipe Sampling Summary Report

3.4 The Cheese Playground

At The Cheese Playground (Background B; BB), soil samples were collected from two depths (0-1 inch and 1-6 inches) at three (3) locations (BB-1, BB-2, and BB-3). BB-1 soil samples were collected near the playground area on the southwest side of the park, BB-2 soil samples were collected near the center of the park, and BB-3 samples were collected near the baseball fields on the north end of the park. Wipe samples were collected from a green tube near the middle of the main play structure (BB-Meth1-1A), tan slide at the edge of the main play structure (BB-Meth1-2A), and a green plastic merry-go-round near the edge of the playground (BB-Meth1-3A). These locations are marked in **Figure 5**.

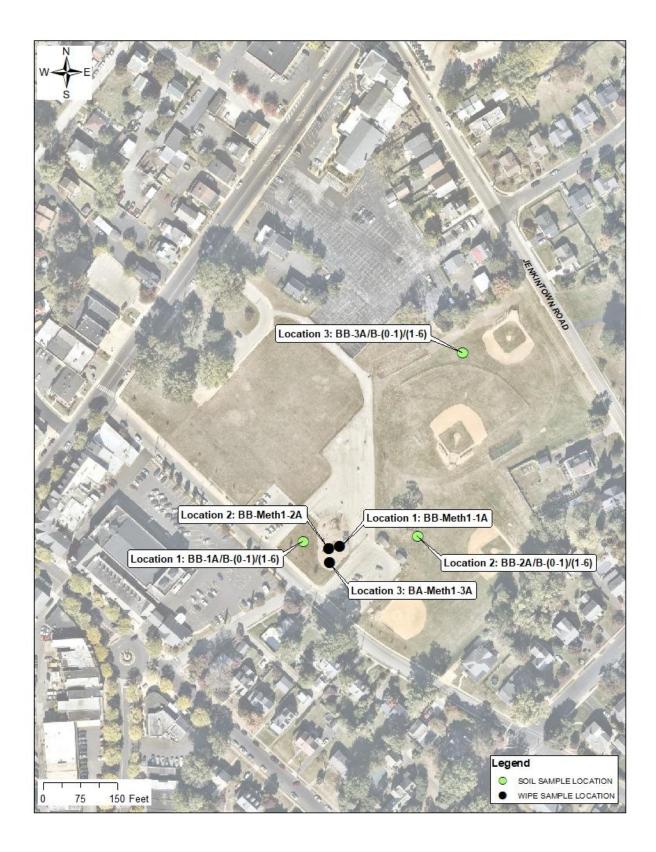


Figure 5: The Cheese Playground (Background B; BB) Soil and Surface Wipe Sampling Locations

4.0 Analytical Results

4.1 Soil Sample Analytical Results

Soil samples were analyzed by Eurofins Laboratories of Lancaster, Pennsylvania.

Table 1 presents a summary of all samples and the analytical parameters. **Table 2** presents the consolidated summary of all soil sampling results from Jenkintown School, Abington Friends School, Wall Park and The Cheese Playground.

The following methodology was used to evaluate the soil sampling results:

- Soil sampling results were compared to numerical values established by Pennsylvania Department of Environmental Protection (PADEP) Land Recycling and Environmental Remediation Standards Act (Act 2). Data was compared with the Residential Direct Contact (0-15 feet) numerical values presented in Act 2 Statewide Health Standard Table 3a for organic constituents and Table 4a for inorganic constituents established by PADEP as Medium Specific Concentrations.
- 2. Background soil sample results from Wall Park and The Cheese Playground were also considered in the data analysis.
- 3. An evaluation of results from 0 to 1-inch samples versus the 1 to 6-inch sample results was conducted. Collecting soil samples from two depth intervals allows for a better understanding of the potential impacts from airborne materials from the fire (reflected in the upper 1-inch of the soil column) versus non-fire conditions (reflected in the lower 1-inch to 6-inch soil column). Hence the 1 to 6-inch sample represents background conditions for the analytical results from the 0 to 1-inch samples.

Act 2 has no established values for asbestos. United States Environmental Protection Agency (USEPA) defines "Asbestos Containing Materials" as "any material or product which contains more than one percent asbestos" (USEPA Asbestos Hazard and Emergency Response Act (AHERA) – Glossary of Asbestos Hazard and Emergency Response Act Terms). The initial screening of data considered if any asbestos was present in the soil samples via Polarized Light Microscopy (PLM).

Full soil sampling results are presented in the Appendices of this report. **Appendices A – D** respectively present soil sampling results from Jenkintown School, Abington Friends School, Wall Park (Background Location A), and The Cheese Playground (Background Location B) compared to applicable Act 2 standards.

4.2 Soil Sampling Data Evaluation

As shown in **Table 2**, PAHs and metals soil sampling results are below the selected Act 2 screening values except for arsenic. Asbestos and cyanide were not detected.

PAH and metals constituents are ubiquitous in urban areas. The PAH and metals concentrations are similar between the school locations and background locations. This confirms that the fire did not transport significant amounts of PAH or metals to properties in the down-wind direction. Although the small sample size between background and target property sample size prohibits rigorous statistical evaluation, the data indicate that soil analytical concentrations represent background conditions.

Since arsenic concentrations exceeded screening values at background and target locations, this data evaluation is directed toward the arsenic distribution. The following is noted for arsenic in soil in this evaluation:

- Concentrations of arsenic at Abington Friends School ranged from 5.9 to 13 mg/kg in the 0 to 1 inch interval and from 9.1 to 15 mg/kg in the 1 to 6-inch interval. Concentrations of arsenic at the Jenkintown School ranged from 4.9 to 19 mg/kg in the 0 to 1 inch interval and 7.9 to 16 mg/kg in the 1 to 6-inch interval.
- Background soil sample concentrations of arsenic ranged from 4.5 to 11 mg/kg in the 0 to 1-inch interval and from 4.6 to 12 mg/kg in the 1 to 6-inch interval.

These arsenic detections are not a result of fire deposition. The concentrations of arsenic detected in the shallow soil samples are consistent with the concentrations detected in the deeper soil samples and at the background locations and are also typical of this geographical region. An evaluation of background concentrations of arsenic in Pennsylvania (AECOM, 2002) showed that arsenic was detected in 405 of 408 samples collected at a median concentration of 10.3 mg/kg and at a 95th percentile concentration of 23.4 mg/kg. Finally, the absence of any fire related markers in soil sampling results (i.e., no PAHs), further support the conclusion that the arsenic concentrations are background to the geographic area.

4.3 Wipe Sample Analytical Results

Wipe samples were analyzed by Eurofins Laboratories of Lancaster, Pennsylvania. **Table 2** presents a consolidated summary of the wipe sampling results from background Location A (Wall Park), background location (B) The Cheese Playground, Jenkintown Schools, and Abington Friends School. **Appendix E – H,** respectively, present surface wipe sampling results from Jenkintown School, Abington Friends School, Wall Park (Background Location A), and The Cheese Playground (Background Location B) compared to numerical values established by the Contaminants of Potential Concern (COPC) framework.

4.4 Wipe Sampling Data Evaluation

All outdoor surface wipe results collected from the Schools and background locations were below laboratory detection limits and below all relevant health-based screening guidelines. This includes the COPC/WTC indoor benchmark (1.45 ng/cm²) and the CTEH-adapted outdoor benchmark (8.7 ng/cm²). These findings indicate that there is no discernible impact from the fire at the Schools and no human health risk associated with potential PAH exposure at any sampling location.

References

- California Department of Public Health (CDPH). (2022). Lead in Dust: Information for Environmental Investigators and Risk Assessors. California Department of Public Health, Childhood Lead Poisoning Prevention Branch. Retrieved from: https://www.cdph.ca.gov
- CTEH Preliminary Wipe Sampling Summary Report: SPS Technologies Fire (2025) report
- ATSDR (2022). Guidance for Calculating Benzo(a)pyrene Equivalents for Cancer Evaluations of Polycyclic Aromatic Hydrocarbons. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry.
- EPA (2003). World Trade Center Indoor Environment Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. U.S. Environmental Protection Agency, COPC Committee.
- EPA (2003b). *Background Study for the World Trade Center Indoor Air Assessment*. U.S. Environmental Protection Agency. https://semspub.epa.gov/work/HQ/176218.pdf
- EPA (2011). Exposure Factors Handbook: 2011 Edition. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. EPA/600/R-09/052F. Available at: https://www.epa.gov/expobox/exposure-factors-handbook
- AECOM (2002). Background Versus Risk-Based Screening Levels An Examination of Arsenic Background Soil Concentrations in Seven States.
 https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1093&context=soilsproceedings?

Tables

SPS Technologies Table 1 -Sample Summary Table

				Table 1 -Sample Summary Tab	le				
Location	Sample ID	Matrix	Depth Interval (inches)	Location	LAB SAMPLE ID	Asbestos PLM	TAL Metals w/ Mercury	PAHS	Cyanide (Total and Free)
Abington Friends School									
AF-1A	AF-1A (0-1)	Soil	0-1	Between Baseball Field and Pool	410-212494-1		х	X	х
AF-1A	AF-1A (1-6)	Soil	1-6	Between Baseball Field and Pool	410-212494-3		х	X	x
AF-1B	AF-1B (0-1)	Soil	0-1	Between Baseball Field and Pool	410-212494-2	x			
AF-1B	AF-1B (1-6)	Soil	1-6	Between Baseball Field and Pool	410-212494-4	х			
AF-2A	AF-2A (0-1)	Soil	0-1	Small Playground Near Parking	410-212494-5		х	х	х
AF-2A	AF-2A (1-6)	Soil	1-6	Small Playground Near Parking	410-212494-7		х	х	х
AF-2B	AF-2B (0-1)	Soil	0-1	Small Playground Near Parking	410-212494-6	х			
AF-2B	AF-2B (1-6)	Soil	1-6	Small Playground Near Parking	410-212494-8	х			
AF-3A	AF-3A (0-1)	Soil	0-1	Garden Area	410-212494-9		х	х	х
AF-3A	AF-3A (1-6)	Soil	1-6	Garden Area	410-212494-11		х	х	х
AF-3B	AF-3B (0-1)	Soil	0-1	Garden Area	410-212494-10	х			
AF-3B	AF-3B (1-6)	Soil	1-6	Garden Area	410-212494-12	х			
AF-Meth1-1A	AF-Meth1-1A	Wipe	N/A	Green Slide Playground	410-212480-1			Х	
AF-Meth1-2A	AF-METH1-2A	Wipe	N/A	Structure Playground	410-212480-5			Х	
AF-Meth1-3A	AF-Meth1-3A	Wipe	N/A	Red Dog House Playground	410-212480-9			х	
Jenkintown School		'	•						
JS-1A	JS-1A (0-1)	Soil	0-1	Circle Entrance	410-212495-1		х	х	х
JS-1A	JS-1A (1-6)	Soil	1-6	Circle Entrance	410-212495-3		х	Х	X
JS-1B	JS-1B (0-1)	Soil	0-1	Circle Entrance	410-212495-2	x			
JS-1B	JS-1B (1-6)	Soil	1-6	Circle Entrance	410-212495-4	х			
JS-2A	JS-2A (0-1)	Soil	0-1	Playground Area	410-212495-5		х	х	х
JS-2A	JS-2A (1-6)	Soil	1-6	Playground Area	410-212495-7		х	х	x
JS-2B	JS-2B (0-1)	Soil	0-1	Playground Area	410-212495-6	х			
JS-2B	JS-2B (1-6)	Soil	1-6	Playground Area	410-212495-8	х			
JS-3A	JS-3A (0-1)	Soil	0-1	New Garden	410-212495-9		х	х	х
JS-3A	JS-3A (1-6)	Soil	1-6	New Garden	410-212495-11		х	х	х
JS-3B	JS-3B (0-1)	Soil	0-1	Playground Area	410-212495-10	х			
JS-3B	JS-3B (1-6)	Soil	1-6	Playground Area	410-212495-12	x			
JS-METH1-1A	JS-METH1-1A	Wipe	N/A	Covered Bench On Playground	410-212483-1			х	
JS-METH1-2A	JS-METH1-2A	Wipe	N/A	Covered Bench Near West Avenue	410-212483-7			х	
JS-METH1-3A	JS-METH1-3A	Wipe	N/A	Playground Slide Entrance	410-212483-13			х	

				Table 1 -Sample Summary Tab	le				
Location	Sample ID	Matrix	Depth Interval (inches)	Location	LAB SAMPLE ID	Asbestos PLM	TAL Metals w/ Mercury	PAHS	Cyanide (Total and Free)
Wall Park									
BA-1A	BA-1A (0-1)	Soil	0-1	Playground/Tennis	410-212493-1		x	х	x
BA-1A	BA-1A (1-6)	Soil	1-6	Playground/Tennis	410-212493-3		х	х	x
BA-1B	BA-1B (0-1)	Soil	0-1	Playground/Tennis	410-212493-2	х			
BA-1B	BA-1B (1-6)	Soil	1-6	Playground/Tennis	410-212493-4	х			
BA-2A	BA-2A (0-1)	Soil	0-1	Playground/Bathroom	410-212493-5		х	х	х
BA-2A	BA-2A (1-6)	Soil	1-6	Playground/Bathroom	410-212493-7		х	х	х
BA-2B	BA-2B (0-1)	Soil	0-1	Playground/Bathroom	410-212493-6	х			
BA-2B	BA-2B (1-6)	Soil	1-6	Playground/Bathroom	410-212493-8	х			
BA-3A	BA-3A (0-1)	Soil	0-1	Field North	410-212493-9		х	х	х
BA-3A	BA-3A (1-6)	Soil	1-6	Field North	410-212493-11		х	х	х
BA-3B	BA-3B (0-1)	Soil	0-1	Field North	410-212493-10	х			
BA-3B	BA-3B (1-6)	Soil	1-6	Field North	410-212493-12	х			
BA-4A	BA-4A (0-1)	Soil	0-1	Field East	410-212493-13		x	х	x
BA-4A	BA-4A (1-6)	Soil	1-6	Field East	410-212493-15		х	х	х
BA-4B	BA-4B (0-1)	Soil	0-1	Field East	410-212493-14	х			
BA-4B	BA-4B (1-6)	Soil	1-6	Field East	410-212493-16	х			
BA-METH1-1A	BA-METH1-1A	Wipe	N/A	Green Slide	410-212484-2			х	
BA-METH2-2A	BA-METH2-2A	Wipe	N/A	Playground Tower	410-212484-9			х	
BA-METH1-3A	BA-METH1-3A	Wipe	N/A	Picnic Tables	410-212484-17			х	
neese Park					'		'		
BB-1A	BB-1A (0-1)	Soil	0-1	Playground	410-214425-7		x	х	x
BB-1A	BB-1A (1-6)	Soil	1-6	Playground	410-214425-9		х	х	х
BB-1B	BB-1B (0-1)	Soil	0-1	Playground	410-214425-8	х			
BB-1B	BB-1B (1-6)	Soil	1-6	Playground	410-214425-10	х			
BB-2A	BB-2A (0-1)	Soil	0-1	Near Tree	410-214425-11		x	х	х
BB-2A	BB-2A (1-6)	Soil	1-6	Near Tree	410-214425-13		x	х	х
BB-2B	BB-2B (0-1)	Soil	0-1	Near Tree	410-214425-12	х			
BB-2B	BB-2B (1-6)	Soil	1-6	Near Tree	410-214425-14	x			
BB-3A	BB-3A (0-1)	Soil	0-1	Baseball Field North	410-214425-15		х	х	x
BB-3A	BB-3A (1-6)	Soil	1-6	Baseball Field North	410-214425-17		x	х	х
BB-3B	BB-3B (0-1)	Soil	0-1	Baseball Field North	410-214425-16	х			
BB-3B	BB-3B (1-6)	Soil	1-6	Baseball Field North	410-214425-18	x			
BB-METH1-1A	BB-METH1-1A	Wipe	N/A	Green Tube	410-213171-3	**		х	
BB-METH1-2A	BB-METH1-2A	Wipe	N/A	Beige Slide	410-213171-9			х	
BB-METH1-3A	BB-METH1-3A	Wipe	N/A	Green Spinner	410-213171-17			Х	

SPS Technologies – Abington, PASchool Soil and Wipe Sampling Summary Report

Soil Sampling Co	TA onsolidated Results - Results Above	BLE 2 PADEP Act 2 Standards	for Residential Direct Contact
Parameter	PA DEP Act 2 Direct Contact for Residential Soils 0-15 feet	Results	Locations
PAHs	Various	Not detected or below Act 2 Standards	N/A
Arsenic	12 mg/kg	At or above Act 2 Standards (Representative of Background)	AF-1A (1-6 inches): 15 mg/kg AF-3A (0-1 inch): 13 mg/kg AF-3A (1-6 inches): 12 mg/kg JS-2A (0-1 inch): 16 mg/kg JS-2A (1-6 inches): 16 mg/kg JS-3A (0-1 inch): 19 mg/kg BA-3A (1-6 inch): 12 mg/kg
All Other Metals	Various	Below Act 2 Standards	N/A
Cyanide Total	N/A	No Detections	N/A
Cyanide Free	130 mg/kg	No Detections	N/A
PLM*	N/A	No Detections	N/A

^{*}The Workplans indicated that if asbestos was detected by PLM, then additional speciation of the asbestos would be performed via Transmission Electron Microscopy (TEM) to further assess asbestos risk. Since no asbestos was detected by PLM and detection limits were at or less than 1%, no further evaluation of the data was conducted.

Appendices

					APPE	NDIX A: SO	IL SAI	MPLING RE	SULTS FRO	M JEN	KINTOWN	SCHOOL									
	Field Sample ID	PA DEP Act 2	JS	S-1A (0-	1)	J	S-1A (1-	6)	JS	S-2A (0-	1)	JS	S-2A (1-	6)	J	S-3A (0-	-1)	J:	S-3A (1-	6)	
	Lab Sample ID	Direct Contact	410	0-21249	95-1	410)-21249	5-3	410)-21249	5-5	410)-21249	95-7	41	0-2124	95-9	410	-21249	5-11	
	Description	Standard for Residential		il; 0-1 ir le Entra			oil; 1-6 le Entra			oil; 0-1 i			oil; 1-6 i ground			oil; 0-1 ew Gard			oil; 1-6 i ew Gard		
	Sampling Date	Soils 0-15 feet	3.	/14/202	25	3	/14/202	25	3	/14/202	25	3	/14/202	25	3	3/14/20	25	3	/14/202	25	
Parameter	Units		Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	
Semivolatiles - 8270E SIM									•									•			
Acenaphthene	ug/Kg	13000000	28	J	9.2	240	J	1.9	61	J	10	13	J	10	57	J	12	24	J	2.0	
Acenaphthylene	ug/Kg	13000000	22	J	9.2	19	J	1.9	32	J	10	19	J	10	14	J	12	8.4	J	2.0	
Anthracene	ug/Kg	66000000	100		9.2	410		19	110		10	42		10	84		12	43		2.0	
Benzo[a]anthracene	ug/Kg	6100	380		9.2	1000		19	450		10	260		10	290		12	180		2.0	
Benzo[a]pyrene	ug/Kg	4200	380		9.2	930		19	440		10	270		10	270		12	160		2.0	
Benzo[b]fluoranthene	ug/Kg	3500	540		9.2	1300		1.9	590		10	340		10	380		12	220		2.0	
Benzo[g,h,i]perylene	ug/Kg	13000000	230		9.2	540		19	240		10	160		10	150		12	87		2.0	
Benzo[k]fluoranthene	ug/Kg	3500	180		9.2	370		1.9	220		10	150		10	140		12	77		2.0	
Chrysene	ug/Kg	35000	390		9.2	940		19	420		10	250		10	270		12	160		2.0	
Dibenz(a,h)anthracene	ug/Kg	1000	69		9.2	140		1.9	76		10	46		10	49		12	28		2.0	
Fluoranthene	ug/Kg	8800000	860		9.2	2300		19	950		10	530		10	620		12	350		2.0	
Fluorene	ug/Kg	8800000	26		9.2	190		1.9	34		10	9.5	J	10	29		12	12		2.0	
Indeno[1,2,3-cd]pyrene	ug/Kg	3500	280		9.2	670		19	310		10	200		10	190		12	110		2.0	
Naphthalene	ug/Kg	13000	<7.4		18	42	J	3.8	13	J	20	<8.4	J	21	<9.9		25	2.3	J	3.9	
Phenanthrene	ug/Kg	66000000	410		13	1600		26	440		14	190		15	340		17	170		2.8	
Pyrene	ug/Kg	6600000	600		3.7	1500		19	710		10	410		10	440		12	250		2.0	
2-Methylnaphthalene	ug/Kg	57000	<7.4	J	18	23	J	3.8	<8.2	J	20	<8.4	J	21	<9.9	J	25	1.7	J	3.9	
Metals - 6020B and 7471B (Me																					
Aluminum	mg/kg	190000	16000		22	15000		23	19000		23	20000		25	35000		29	16000		24	
Antimony	mg/kg	88	0.34		0.22	0.48		0.23	0.68		0.23	0.84	J	1.2	0.34		0.29	0.10	J	0.24	
Arsenic	mg/kg	12	4.9		0.43	7.9		0.45	16		0.47	16		0.49	19		0.58	8.7		0.48	
Barium	mg/kg	44000	110		0.43	82		0.45	150		0.47	170		0.49	110		0.58	50		0.48	
Beryllium	mg/kg	440	0.80		0.11	0.88		0.11	1.1		0.12	1.5		0.12	1.5		0.14	0.63		0.12	
Cadmium	mg/kg	110	0.14		0.11	0.18		0.11	0.50		0.12	0.58	J	0.62	0.20		0.14	0.092	J	0.12	
Calcium	mg/kg	N/A	4300		43	1600		45	2000		47	1900		49	2100		58	840		48	
Chromium	mg/kg	190000(1)	33		0.43	24		0.45	25		0.47	31		0.49	27		0.58	9.4		0.48	
Cobalt	mg/kg	66	12		0.22	6.8		0.23	13		0.23	33		0.25	17		0.29	6.5		0.24	
Copper	mg/kg	7200	22		0.43	18		0.45	45		0.47	41		0.49	51		0.58	16		0.48	
Iron	mg/kg	150000	23000		22	19000		23	22000		23	29000		25	27000		29	9800		24	
Lead	mg/kg	500	47		0.22	38		0.23	190		0.23	180		0.25	95		0.29	38		0.24	
Magnesium	mg/kg	N/A	5200		11	3100		11	2900		12	3800		12	4500		14	1500		12	
Manganese	mg/kg	31000	470		0.43	590		0.45	650		0.47	1100		0.49	550		0.58	200		0.48	
Nickel	mg/kg	4400	28		0.43	13		0.45	28		0.47	29		0.49	28		0.58	15		0.48	
Potassium	mg/kg	N/A	3100		43	2000		45	2800		47	3400		49	4000		58	1400		48	
Selenium	mg/kg	1100	0.39	J	0.43	0.34	J	0.45	0.65		0.47	0.69		0.49	0.36	J	0.58	0.13	J	0.48	
Silver	mg/kg	1100	0.063	j	0.11	0.059	J	0.11	0.15		0.12	0.14		0.12	0.18	Ė	0.14	0.070	j	0.12	
Sodium	mg/kg	N/A	160	<u> </u>	54	110		57	92		58	63		62	79		72	29	j	60	
Thallium	mg/kg	2.2	0.21		0.11	0.17		0.11	0.36		0.12	0.45		0.12	0.40		0.14	0.14	<u> </u>	0.12	
Vanadium	mg/kg	1100	41		0.86	33		0.9	33		0.93	44		0.99	38		1.2	14		0.95	
Zinc	mg/kg	66000	85		32	65		34	150		35	170		37	150		43	45		36	
Mercury	mg/kg	35	0.072		0.066	0.082		0.063	0.21		0.063	0.24		0.074	0.26		0.087	0.18		0.068	
	Cyanide Total- 9012B and Cyanide Free - Kelada-01 Rev 1.2																				
Cyanide - Total	mg/kg	N/A	<0.20		0.55	<0.19		0.54	<0.22		0.61	<0.22		0.62	<0.26		0.73	<0.19		0.54	
Cyanide - Free	mg/kg	130	<1.19		1.19	<1.18		1.18	<1.29		1.29	<1.20		1.2	<1.48		1.48	<1.38		1.38	
Asbestos	8/1/5	200			1.10	11110		1.10			1.20						1 20	- 1.00		2.00	
PLM	%	N/A	ND	(B	sample)	ND (B sample)			ND	(B	sample)) ND (B sample)			ND	3 sample)	e) ND (B sample)				
TEM	%	N/A		N/A		l	N/A		l	N/A		l	N/A		<u> </u>	N/A		l	N/A		
	han the RL but greater than or equal to the MDL and the concentration is an approximate value									N/A			N/A					IN/A			

J Results is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

RL Reporting Limi

⁽¹⁾ Most chromium in soil is in the III valence state. PADEP has two screening values for chromium - the value shown is for Chromium III.

				AP	PENDIX E	3: SOIL SA	MPLII	NG RESU	LTS FROM	I ABIN	IGTON FRI	IENDS SCI	HOOL							
	Field Sample ID		А	F-1A (0-		I	F-1A (1-			F-2A (0		I	-2A (1-	6)	A	F-3A (0-	-1)	A	F-3A (1-	6)
	Lab Sample ID	PA DEP Act 2	410	0-21249	94-1	410)-21249	4-3	41	0-2124	94-5	410	-21249	4-7	410	0-21249	94-9	410	-212494	4-11
	Description	Direct Contact Standard for Residential Soils	So	il; 0-1 ir			oil; 1-6	in	Small P	oil; 0-1 laygrou Parkin	ınd Near	Sc Small P	il; 1-6 i	n. nd Near	Sc	oil; 0-1 irden A	in.	Sc	oil; 1-6 i orden Ar	n.
	Sampling Date	0-15 feet	3	/14/202	25	3	/14/202	25		/14/20			/14/202		3	/14/20:	25	3	/14/202	25
Parameter	Units		Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL
Semivolatiles - 8270E SIN			Resuit	ų ų	RL.	Result	ų	KL	Result	Q	RL	Result	Q	KL	Result	u	KL	Result	ų	KL
Acenaphthene	ug/Kg	13000000	36	J	11	4.3	J	9.5	<4.0		10	0.95	J	2.3	2.0	J	1.7	2.4	J	2.1
Acenaphthylene	ug/Kg	13000000	23	1	11	12	1	9.5	5.1	1	10	6.9	1	2.3	10	1	1.7	5.5	1	2.1
Anthracene	ug/Kg	66000000	100		11	16	-	9.5	4.1	1	10	6.6		2.3	12		1.7	11	-	2.1
Benzo[a]anthracene	ug/Kg	6100	360		11	82		9.5	16	-	10	30		2.3	68		1.7	41		2.1
Benzo[a]pyrene	ug/Kg	4200	360		11	88		9.5	18		10	34		2.3	72		1.7	41		2.1
Benzo[b]fluoranthene	ug/Kg	3500	540		11	120		9.5	28		10	48		2.3	100		1.7	57		2.1
Benzo[g,h,i]perylene	ug/Kg	13000000	250	l	11	59		9.5	14		10	22		2.3	45		1.7	25		2.1
Benzo[k]fluoranthene	ug/Kg	3500	170		11	40		9.5	8.0	J	10	15		2.3	35		1.7	20		2.1
Chrysene	ug/Kg	35000	370		11	85		9.5	18		10	31		2.3	70		1.7	41		2.1
Dibenz(a,h)anthracene	ug/Kg	1000	72		11	18		9.5	<4.0		10	6.7		2.3	14		1.7	8.1		2.1
Fluoranthene	ug/Kg	8800000	810		11	160		9.5	30		10	54		2.3	140		1.7	80		2.1
Fluorene	ug/Kg	8800000	42		11	5.0	J	9.5	<4.0		10	1.4	J	2.3	2.6		1.7	3.3		2.1
Indeno[1,2,3-cd]pyrene	ug/Kg	3500	290		11	71		9.5	15		10	25		2.3	55		1.7	31		2.1
Naphthalene	ug/Kg	13000	22	J	21	<7.6		19	<8.0		20	7.4	J	4.7	1.5	J	3.4	2.7	J	4.1
Phenanthrene	ug/Kg	66000000	480		15	67		13	12	J	14	17		3.3	46		2.4	37		2.9
Pyrene	ug/Kg	6600000	590		11	130		9.5	24		10	42		2.3	100		1.7	58		2.1
2-Methylnaphthalene	ug/Kg	57000	12	J	21	<7.6	J	19	<8.0	J	20	<1.9	J	4.7	1.6	J	3.4	2.6	J	4.1
Metals - 6020B and 7471E			•			•						•			•			•		
Aluminum	mg/kg	190000	21000		23	23000		80	29000	J	98	26000		25	23000		20	22000		25
Antimony	mg/kg	88	0.34		0.23	0.23		0.16	0.12		0.20	0.19	J	0.25	0.29		0.20	0.25		0.25
Arsenic	mg/kg	12	11		0.47	15		0.32	5.9		0.39	9.1		0.50	13		0.40	12		0.49
Barium	mg/kg	44000	130		0.47	120		0.320	160		0.39	190		0.50	110		0.40	96		0.49
Beryllium	mg/kg	440	1.5		0.12	1.8		0.080	1.5		0.098	1.4		0.13	1.2		0.099	1.1		0.12
Cadmium	mg/kg	110	0.30		0.12	0.23		0.080	0.11		0.098	0.20		0.13	0.34		0.099	0.31		0.12
Calcium	mg/kg	N/A	3900		47	5400		160	2600		200	10000		50	1900		40	1500		49
Chromium	mg/kg	190000(1)	39		0.47	51		0.32	50		0.39	310		0.50	41		0.40	43		0.49
Cobalt	mg/kg	66	15		0.23	16		0.16	19		0.20	15		0.25	11		0.20	9.7		0.25
Copper	mg/kg	7200	44		0.47	38		0.32	45		0.39	53		0.50	20		0.40	18		0.49
Iron	mg/kg	150000	30000		23	32000		80	35000		98	47000		130	25000		91	26000		20
Lead	mg/kg	500	71		0.23	57		0.16	30		0.20	40		0.25	63		0.20	51		0.25
Magnesium	mg/kg	N/A	5400		12	7500		8.0	8000		9.8	8600		13	3000		9.9	2800		12
Manganese	mg/kg	31000	590		0.47	640		0.32	630		0.39	2800		2.5	570		0.40	480		0.49
Nickel	mg/kg	4400	27		0.47	27		0.32	32		0.39	30		0.50	21		0.40	19		0.49
Potassium	mg/kg	N/A	3400		47	3700		32	6100		39	5000		50	1800		40	1700		49
Selenium	mg/kg	1100	0.37	J	0.47	0.43		0.32	0.34	J	0.39	0.37	J	63	0.58		0.40	0.51		0.49
Silver	mg/kg	1100	0.13		0.12	0.11		0.080	0.053	J	0.098	0.085	J	0.50	0.15		0.099	0.17		0.12
Sodium	mg/kg	N/A	150		59	190		40	140		49	160		0.13	90		50	81		61
Thallium	mg/kg	2.2	0.32		0.12	0.42		0.080	0.39		0.098	0.37		63	0.23		0.099	0.23		0.12
Vanadium	mg/kg	1100	51		0.94	65		0.64	70		0.78	99		1.0	45		0.80	44		0.98
Zinc	mg/kg	66000	120		35	110		24	100		29	120		38	82		30	68		37
Mercury	mg/kg	35	0.27		0.077	0.46		0.067	0.14		0.071	0.35		0.083	0.26		0.057	0.19		0.075
O	d Cyanide Free -	Kelada-01 Rev 1.	2																	
Cyanide Total- 9012B and		N/A	<0.22		0.62	<0.19		0.53	<0.21		0.60	<0.25		0.69	<0.18		0.49	<0.22		0.60
Cyanide Total 9012B and Cyanide - Total	mg/kg																			
	mg/kg mg/kg	130	<1.21		1.21	<1.19		1.19	<1.16		1.16	<1.32		1.32	<1.06		1.06	<1.23		1.23
Cyanide - Total			<1.21		1.21	<1.19		1.19	<1.16		1.16	<1.32		1.32	<1.06		1.06	<1.23		1.23
Cyanide - Total Cyanide - Free			<1.21 ND	(B:	1.21 sample)	<1.19 ND	(B s	1.19 sample)	<1.16 ND	(B	1.16 sample)	<1.32 ND	(B:	1.32 sample)	<1.06	(B	1.06 sample)	<1.23	(B:	1.23 sample)

J Results is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

RL Reporting Limit

⁽¹⁾ Most chromium in soil is in the III valence state. PADEP has two screening values for chromium - the value shown is for Chromium III.

						۸	DDEN	חוא כי פּנ	OIL SAMP	I INC DE	פד ווו:	EOD W	AII DA	DK (Back	rground I	ocatio	nn Al									
						<u>^</u>	PPEN	DIA C. 30	JIL SAMP	LING NE	I	FUR W	ALL FA	ININ (Daci	igi ouilu L	.ocau	лі А)	l			<u> </u>					
Field	d Sample ID		В	A-1A (0-	-1)	B/	\-1A (1-	6)	ВА	-2A (0-1)		BA	A-2A (1-	6)	В	A-3A (0-	1)	В	A-3A (1-	-6)	В	A-4A (0-	-1)	В	A-4A (1-	6)
Lab	Sample ID	PA DEP Act 2 Direct Contact	410	0-21249	93-1	410	-21249	3-3	410-	-212493-5		410	-21249	3-7	410	0-21249	3-9	410	-21249	3-11	410	-21249	3-13	410	-212493	3-15
1	Description	Standard for Residential		il; 0-1 ir round/1			oil; 1-6 ound/T			il; 0-1 in ınd/Bathro		So	oil; 1-6 i			oil; 0-1 i ield Nor			oil; 1-6 i eld Nor			oil; 0-1 i			oil; 1-6 ii ield Eas	
		Soils 0-15 feet	rtays	- Cullur	i e i i i i i	rtaygi	ounu/ i	Cillis	rtaygiou	iliu/ Datili 0		rtaygio	unu/ Da	unoom		ietu ivoi		- "	eta Noi			iciu La			- Las	-
San	npling Date		3	/15/202	25	3,	15/202	25	3/:	15/2025		3/	/15/202	:5	3	/15/202	25	3	/15/202	25	3	/15/202	25	3	/15/202	25
Parameter	Units		Result	Q	RL	Result	Q	RL	Result	Q F	L	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL
Semivolatiles - 8270E SIM		4000000			0.4	5.0			10.0			47			70											44
Acenaphthene	ug/Kg	13000000	8.9 43	J	21 21	5.6 58		1.9	<9.8 19	-	4	17 22	J	22	72 450	J	11	67	J	11	59	J	11	63	J	11
Acenaphthylene	ug/Kg	13000000 66000000	39		21	33		1.9			4	42		22 22	360	J	11	310 300	J	11	370 360	J	11	290 430		11
Anthracene	ug/Kg ug/Kg	6100	230		21	200		1.9	19 93		4	210		22	2000		11	1700		11 11	2200		11 11	2400	$\overline{}$	11 54
Benzo[a]anthracene Benzo[a]pyrene	ug/Kg ug/Kg	4200	240		21	220		1.9	100		4	210		22	2000		11	1700		11	2500		57	2400	\vdash	54
Benzo[b]fluoranthene	ug/Kg ug/Kg	3500	320		21	290		1.9	140		_	280		22	2900		57	2400		11	3200		57	3000	\Box	11
Benzo[g,h,i]perylene	ug/Kg ug/Kg	13000000	150		21	150		1.9	70	-	4	120		22	1300		11	1000		11	1500		11	1300	\Box	11
Benzo[k]fluoranthene	ug/Kg	3500	110		21	100		1.9	48.0		4	86		22	970		11	780		11	1100		11	980	$\overline{}$	54
Chrysene	ug/Kg	35000	210		21	190		1.9	96			180		22	1900		11	1600		11	1900		11	1900	\Box	11
Dibenz(a,h)anthracene	ug/Kg	1000	46		21	45		1.9	25		4	41		22	400		11	310		11	430		11	400	\Box	11
Fluoranthene	ug/Kg	8800000	410		21	300		1.9	180		_	380		22	77		57	3300		54	3300		57	3700	\Box	54
Fluorene	ug/Kg	8800000	11	J	21	7.0		1.9	<9.8		4	11	J	22	3700		11	70		11	58		11	66	\Box	11
Indeno[1,2,3-cd]pyrene	ug/Kg	3500	180		21	170		1.9	87		4	150		22	1500		11	1200		11	1700		11	1600		11
Naphthalene	ug/Kg	13000	<17		41	6.6		3.8	<20	4	9	<18		44	46	J	23	28	J	22	57		23	46	J	22
Phenanthrene	ug/Kg	66000000	150		29	98		2.7	63	1 3	4	170		31	1200		16	1100		15	830		16	1200	\Box	15
Pyrene	ug/Kg	6600000	330		21	280		1.9	140	1 2	4	300		22	2800		57	2500		54	2900		57	3000		54
2-Methylnaphthalene	ug/Kg	57000	<17		41	5.4		1.9	<20	4	9	<18		44	32	J	23	20	J	22	29		23	23	J	22
Metals - 6020B and 7471B (M	1ercury)																									
Aluminum	mg/kg	190000	24000		21	26000		22	28000	2	6	27000		24	35000		23	30000		24	30000		23	29000	$oldsymbol{oldsymbol{\sqcup}}$	21
Antimony	mg/kg	88	0.25		0.21	0.23		0.22	0.53	0.	26	0.52		0.24	0.83		0.23	0.91		0.24	0.59		0.23	0.65	ш	0.21
Arsenic	mg/kg	12	5.4		0.41	5.2		0.45	6.1	0.	52	7.1		0.48	10		0.46	12		0.48	11		0.46	11	ш	0.42
Barium	mg/kg	44000	120		0.41	130		0.45	180		52	260		0.48	190		0.46	190		0.48	200		0.46	190	\sqcup	0.42
Beryllium	mg/kg	440	1.1		0.10	1.2		0.11	1.4		13	1.5		0.12	1.7		0.12	2		0.12	1.7		0.11	1.7	\vdash	0.11
Cadmium	mg/kg	110	0.17		0.10	0.20		0.11	0.61		13	1.10		0.12	1.3		0.12	1.300		0.12	0.33		0.11	0.23	\longrightarrow	0.11
Calcium	mg/kg	N/A	1500		41	1300		45	3400		2	3100		48	6900		46	3700		48	5100		46	3000	\vdash	42
Chromium	mg/kg	190000(1)	33		0.41	35		0.45	36		52	37		0.48	47		0.46	47		0.48	50		0.46	52	\vdash	0.42
Cobalt	mg/kg	66	14		0.21	15		0.22	17		26	16		0.24	17		0.23	16		0.24	18		0.23	17	\vdash	0.21
Copper	mg/kg	7200	35		0.41	36		0.45	61		52	94		0.48	82		0.46	79		0.48	56		0.46	54	\vdash	0.42
Iron	mg/kg	150000	26000	-	98	32000 48		91	28000		00	32000	\vdash	93	29000		120	34000		120	37000		110	36000	\vdash	110
Lead	mg/kg	500 N/A	56 7800		0.21 10	48 8300		0.22 11.0	250 7400		26 3	330 6900		0.24 12	290 7900		0.23	320 7600		0.24 12	110 8000		0.23 11	110 7800	\vdash	0.21
Magnesium	mg/kg	N/A 31000	7800 530		0.41	560		0.45	7400		52	6900		0.48	7900		0.46	690		0.48	660		0.46	7800 650	\vdash	0.42
Manganese Nickel	mg/kg mg/kg	4400	27		0.41	29		0.45	36		52	33		0.48	34		0.46	34		0.48	33		0.46	33	\vdash	0.42
Potassium	mg/kg	N/A	6300	_	41	6400		45	5900		2	6000		48	4700		46	3900		48	5400		46	5100	$\overline{}$	42
Selenium	mg/kg	1100	0.37		0.41	0.46		0.45	0.61		52	0.65		0.48	0.85		0.46	0.88		0.48	0.77		0.46	0.86	$\overline{}$	0.42
Silver	mg/kg	1100	0.088	<u>'</u>	0.10	0.083	,	0.43	0.57		13	1.1		0.40	0.19		0.40	0.180		0.40	0.12		0.40	0.12	\Box	0.42
Sodium	mg/kg	N/A	160	É	52	170		56	140		4	180		60	290		58	230		61	300		57	300	\Box	53
Thallium	mg/kg	2.2	0.43		0.10	0.45		0.11	0.47		13	0.48		0.12	0.40		0.12	0.42		0.12	0.47		0.11	0.44	\Box	0.11
Vanadium	mg/kg	1100	48		0.83	50		0.89	49		.0	54		0.96	81		0.92	82		0.97	76		0.91	79	\Box	0.85
Zinc	mg/kg	66000	210		31	230		33	320		9	540		180	260		35	250		36	170		34	150	\Box	32
Mercury	mg/kg	35	0.062	J	0.071	0.069		0.064	0.41		189	0.33		0.074	0.17		0.080	0.18		0.075	0.16		0.083	0.16	\Box	0.073
Cyanide Total- 9012B and C																			·							
Cyanide - Total	mg/kg	N/A	<0.22		0.62	<0.20		0.56	<0.25	0	70	<0.23		0.65	<0.24		0.66	<0.23		0.63	<0.24		0.67	<0.22		0.61
Cyanide - Free	mg/kg	130	<1.28		1.28	<1.12		1.12	<1.60		60	<1.39		1.39	<1.47		1.47	<1.31		1.31	<1.31		1.31	<1.26	\Box	1.26
Asbestos																				•						
PLM	%	N/A	ND	(B	sample)	ND	(B s	sample)	ND	(B samp	le)	ND	(B:	sample)	ND	(B s	sample)	ND	(B:	sample)	ND	(B:	sample)	ND	(B :	sample)
TEM	%	N/A		N/A			N/A			N/A			N/A			N/A			N/A			N/A			N/A	
I Results is less than the RI but	granter than or	oqual to the MDL and	the concentrat	tion is an	approximatou	alue															-			•		

J Results is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

RL Reporting Limit

⁽¹⁾ Most chromium in soil is in the III valence state. PADEP has two screening values for chromium - the value shown is for Chromium III.

			APPEND	OIX D:	SOIL SAI	MPLING R	ESUL	TS FOR TI	HE CHEES	SE PLA	YGROUN	D (Backgro	ound l	ocation	В)					
1	Field Sample ID		ВІ	B-1A (0-	-1)	В	B-1A (1	-6)	E	3B-2A (0	-1)	ВЕ	3-2A (1-	6)	В	B-3A (0	-1)	В	B-3A (1-	6)
	Lab Sample ID	PA DEP Act 2 Direct Contact	410)-21442	25-7	410	0-2144	25-9	410	0-21442	25-11	410-	214425	5-13	410	-21442	5-15	410	-21442	5-17
	Description	Standard for Residential Soils		il; 0-1 ir aygrou			oil; 1-6 aygrou			Soil; 0-1 Near Tre			il; 1-6 i ear Tre			oil; 0-1 all Fiel			oil; 1-6 i all Field	
	Sampling Date	0-15 feet	3.	/17/20:	25	3	/17/20	25	:	3/17/20	25	3/	17/202	:5	3	/17/20	25	3	/17/202	!5
Parameter	Units		Result	Q	RL	Result Q RL		RL	Result Q RL			Result	Q	RL	Result Q RL			Playground	Q	RL
Semivolatiles - 8270E SIN				Result Q RL R													1,0			
Acenaphthene	ug/Kg	13000000	6.7		2.7	8.6	J	11	4.5		2.8	11		11	4.1		3.1	13		11
Acenaphthylene	ug/Kg	13000000	4.7		2.7	9.8	J	11	5.4		2.8	12		11	6.4		3.1	27		11
Anthracene	ug/Kg	66000000	20		2.7	28		11	15		2.8	33		11	16		3.1	48		11
Benzo[a]anthracene	ug/Kg	6100	100		2.7	160		11	100		2.8	190		11	120		3.1	360		11
Benzo[a]pyrene	ug/Kg	4200	100		2.7	160		11	110		2.8	210		11	140		3.1	410		11
Benzo[b]fluoranthene	ug/Kg	3500	140		2.7	220		11	150		2.8	300		11	200		3.1	610		11
Benzo[g,h,i]perylene	ug/Kg	13000000	61		2.7	93		11	73		2.8	130		11	88		3.1	260		11
Benzo[k]fluoranthene	ug/Kg	3500	49		2.7	74		11	55.0		2.8	97		11	65		3.1	200		11
Chrysene	ug/Kg	35000	100		2.7	160		11	110		2.8	200		11	130		3.1	390		11
Dibenz(a,h)anthracene	ug/Kg	1000	20		2.7	26		11	22		2.8	35		11	22		3.1	68		11
Fluoranthene	ug/Kg	8800000	210		2.7	350		11	190		2.8	380		11	270		3.1	740		11
Fluorene	ug/Kg	8800000	5.8		2.7	8.4	J	11	4.1		2.8	9.9	J	11	4.3		3.1	11		11
Indeno[1,2,3-cd]pyrene	ug/Kg	3500	77		2.7	120		11	87		2.8	160		11	110		3.1	320		11
Naphthalene	ug/Kg	13000	<2.1		5.3	<8.9		22	2.8	J	5.6	<9.2		23	<2.5		6.2	<8.9		22
Phenanthrene	ug/Kg	66000000	97		3.7	150		16	69		3.9	150		16	88		4.3	210		16
Pyrene	ug/Kg	6600000	160		2.7	260		11	160		2.8	300		11	190		3.1	570		11
2-Methylnaphthalene	ug/Kg	57000	<2.1		2.1	<8.4		8.4	<2.2		2.2	<9.2		9.2	<2.5		2.5	<8.9		8.9
Metals - 6020B and 7471																				
Aluminum	mg/kg	190000	19000		26	17000		18	27000		29	25000		20	33000		35	37000		26
Antimony	mg/kg	88	0.45		0.26	0.48		0.18	0.52	_	0.29	0.43		0.20	0.5		0.35	0.43		0.26
Arsenic	mg/kg	12	4.5		0.52	4.6		0.37	5.7		0.58	5.7		0.40	4.6		0.71	5		0.53
Barium	mg/kg	44000	130		0.52	100		0.370	140		0.58	120		0.40	200		0.71	200		0.53
Beryllium	mg/kg	440	0.64	1.	0.13	0.62	1.	0.092	1.0	1.	0.14	0.93		0.10	1.1		0.18	1.0		0.13
Cadmium	mg/kg	110	0.32	J+	0.13	0.27	J+	0.092	0.26	J+	0.14	0.28	J+	0.10	0.34	J+	0.18	0.28		0.13
Calcium	mg/kg	N/A	2200		52 0.52	1400		37	6200		58	26000		40	3200		71	2200		53
Chromium	mg/kg	190000(1) 66	27 8.8		0.52	28 8.2		0.37 0.18	41 12		0.58 0.29	40 11		0.40	51 13		0.71 0.35	63 11.0		0.53 0.26
Cobalt	mg/kg	7200	20		0.52	18		0.18	28		0.29	22		0.40	35		0.35	32		0.26
Copper Iron	mg/kg mg/kg	150000	19000		26	17000		18	27000		29	25000		20	34000		35	35000		26
Lead	mg/kg	500	53		0.26	57		0.18	41		0.29	35		0.20	55		0.35	64		0.26
Magnesium	mg/kg	N/A	3900		13	3400		9.2	6500		14	19000		10	7200		18	6300	\vdash	13
Manganese	mg/kg	31000	440		0.52	420		0.37	500		0.58	480		0.40	480		0.71	440		0.53
Nickel	mg/kg	4400	15		0.52	13		0.37	22		0.58	21		0.40	24		0.71	26		0.53
Potassium	mg/kg	N/A	3100		52	2400		37	4100		58	2800		40	5400		71.00	4400		53
Selenium	mg/kg	1100	0.29	1	0.52	0.34	-	0.37	0.46	-	0.58	0.35	1	0.40	0.53	J	0.71	0.60		0.53
Silver	mg/kg	1100	0.099	J	0.13	0.099	<u> </u>	0.092	0.079	,	0.14	0.071	J	0.40	0.12	J	0.18	0.10		0.13
Sodium	mg/kg	N/A	89	ŕ	65	62		46	99	Ť	72	90	ŕ	50	110	Ĺ	88	76		66
Thallium	mg/kg	2.2	0.23		0.13	0.20		0.092	0.29		0.14	0.24		0.10	0.36		0.18	0.41		0.13
Vanadium	mg/kg	1100	35		1.0	33		0.74	52		1.2	49		30.0	64		1.40	70		1.1
Zinc	mg/kg	66000	90		39	84		28	110		43	91		0.80	140		53	140		40
Mercury	mg/kg	35	0.0079	J	0.096	0.092		0.076	0.091	J	0.095	0.093		0.079	0.14		0.11	0.12		0.074
Cyanide Total- 9012B and										<u> </u>										
Cyanide - Total	mg/kg	N/A	<0.26		0.73	<0.24		0.66	<0.29		0.80	<0.24		0.67	<0.32		0.89	<0.22		0.62
Cyanide - Free	mg/kg	130	<1.51		1.51	<1.32		1.32	<1.61		1.61	<1.39		1.39	<1.86		1.86	<1.52		1.52
Asbestos	, , ,						_			-										
PLM	%	N/A	ND	(B	sample)	ND	(B	sample)	ND	(B	sample)	ND	(B	sample)	ND	(B	sample)	ND	(B s	sample)
TEM	%	N/A		N/A	,	1	N/A	,		N/A		l	N/A	,	Ī	N/A	,		N/A	
I Paculte is less than the DI									-			•			•			•		

J Results is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

J+ Estimated with a potential high bias

RL Reporting Limit

⁽¹⁾ Most chromium in soil is in the III valence state. PADEP has two screening values for chromium - the value shown is for Chromium III.

	F	APPENDIX E	: SURFACE \	WIPE SAMP	LING	RESULTS FO	R JENKINTO	WN S	CHOOL					
F	ield Sample ID			J:	S-Meth1	l-1A	J	S-Meth1	-2A	J	S-Meth1	-3A		
	Lab Sample ID	WTC PAH	CTEH PA	41	10-2124	83-1	41	.0-2124	83-7	41	0-21248	3-13		
	Description	Indoor Screening	Outdoor Screening	Covered B	Wipe Sench o	n Playground	Covered Ber	Wipe nch Nea	r West Avenue	Playgrou	Wipe ind Slide	e Entrance		
:	Sampling Date			;	3/14/20	25	;	3/14/20	25	3/14/2025				
Parameter	Units			Result	Q	RL	Result	Q	RL	Result	Q	RL		
Semivolatiles - 8270E SIM	•				•			•						
Acenaphthene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50		
Acenaphthylene	ug/wipe	1.45	8.7	<0.12		0.50	<0.12		0.50	<0.12		0.50		
Anthracene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50		
Benzo[a]anthracene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50		
Benzo[a]pyrene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50		
Benzo[b]fluoranthene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50		
Benzo[g,h,i]perylene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50		
Benzo[k]fluoranthene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50		
Chrysene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50		
Dibenz(a,h)anthracene	ug/wipe	1.45	8.7	<0.20		0.50	<0.20		0.50	<0.20		0.50		
Fluoranthene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50		
Fluorene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50		
Indeno[1,2,3-cd]pyrene	ug/wipe	1.45	8.7	<0.12		0.50	<0.12		0.50	<0.12		0.50		
Naphthalene	ug/wipe	1.45	8.7	<0.20		0.50	<0.20		0.50	<0.20		0.50		
Phenanthrene	ug/wipe	1.45	8.7	<0.12		0.50	<0.12		0.50	<0.12		0.50		
Pyrene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50		
2-Methylnaphthalene	ug/wipe	1.45	8.7	<0.15		0.50	<0.15		0.50	<0.15		0.50		

APPENDIX F: SURFACE WIPE SAMPLING RESULTS FOR ABINGTON FRIENDS SCHOOL													
Field Sample ID Lab Sample ID Description Sampling Date		Screening	CTEH PAH Outdoor Screening	AF-Meth1-1A			AF-Meth1-2A			AF-Meth1-3A			
				410)-21248	30-1	410)-21248	80-5	410-212480-9 Wipe Red Dog House on Playground			
				Green Slid	Wipe de on P	layground	Structur	Wipe e on Pla	ayground				
				3,	/14/20	25	3/14/2025			3/14/2025			
Parameter	Units			Result	Q	RL	Result	Q	RL	Result	Q	RL	
Semivolatiles - 8270E SIM													
Acenaphthene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	< 0.10		0.50	
Acenaphthylene	ug/wipe	1.45	8.7	<0.12		0.50	<0.12		0.50	<0.12		0.50	
Anthracene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	< 0.10		0.50	
Benzo[a]anthracene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	< 0.10		0.50	
Benzo[a]pyrene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	< 0.10		0.50	
Benzo[b]fluoranthene	ug/wipe	1.45	8.7	<0.10		0.50	< 0.10		0.50	< 0.10		0.50	
Benzo[g,h,i]perylene	ug/wipe	1.45	8.7	<0.10		0.50	< 0.10		0.50	< 0.10		0.50	
Benzo[k]fluoranthene	ug/wipe	1.45	8.7	<0.10		0.50	< 0.10		0.50	< 0.10		0.50	
Chrysene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	< 0.10		0.50	
Dibenz(a,h)anthracene	ug/wipe	1.45	8.7	<0.20		0.50	<0.20		0.50	<0.20		0.50	
Fluoranthene	ug/wipe	1.45	8.7	<0.10		0.50	< 0.10		0.50	< 0.10		0.50	
Fluorene	ug/wipe	1.45	8.7	<0.10		0.50	< 0.10		0.50	< 0.10		0.50	
Indeno[1,2,3-cd]pyrene	ug/wipe	1.45	8.7	<0.12		0.50	<0.12		0.50	<0.12		0.50	
Naphthalene	ug/wipe	1.45	8.7	<0.20		0.50	<0.20		0.50	<0.20		0.50	
Phenanthrene	ug/wipe	1.45	8.7	<0.12		0.50	<0.12		0.50	<0.12		0.50	
Pyrene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
2-Methylnaphthalene	ug/wipe	1.45	8.7	<0.15		0.50	<0.15		0.50	<0.15		0.50	

APPENDIX G: SURFACE WIPE SAMPLING RESULTS FOR WALL PARK (BACKGROUND LOCATION A)													
Field Sample ID			CTEH PAH Outdoor Screening	BA-Meth1-1A			BA-Meth1-2A			BA -Meth1-3A			
Lab Sample ID		WTC PAH		410	-21228	34-2	410)-21228	4-9	410-212284-17 Wipe Picnic Tables			
Description		Indoor Screening		Gr	Wipe een Sli	ide	Playg	Wipe (round 1	ower				
Sampling Date				3/	/15/202	25	3	/15/202	25	3/15/2025			
Parameter	Units			Result	Q	RL	Result	Q	RL	Result	Q	RL	
Semivolatiles - 8270E SIM													
Acenaphthene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Acenaphthylene	ug/wipe	1.45	8.7	<0.12		0.50	<0.12		0.50	<0.12		0.50	
Anthracene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Benzo[a]anthracene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Benzo[a]pyrene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Benzo[b]fluoranthene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Benzo[g,h,i]perylene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Benzo[k]fluoranthene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Chrysene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Dibenz(a,h)anthracene	ug/wipe	1.45	8.7	<0.20		0.50	<0.20		0.50	<0.20		0.50	
Fluoranthene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Fluorene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Indeno[1,2,3-cd]pyrene	ug/wipe	1.45	8.7	<0.12		0.50	<0.12		0.50	<0.12		0.50	
Naphthalene	ug/wipe	1.45	8.7	<0.20		0.50	<0.20		0.50	<0.20		0.50	
Phenanthrene	ug/wipe	1.45	8.7	<0.12		0.50	<0.12		0.50	<0.12		0.50	
Pyrene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
2-Methylnaphthalene	ug/wipe	1.45	8.7	<0.15		0.50	< 0.15		0.50	<0.15		0.50	

APPENDIX H: SURFACE WIPE RESULTS FOR THE CHEESE PLAYGROUND (BACKGROUND LOCATION B)													
	Field Sample ID Lab Sample ID WTC PAH Indoor Screening		Outdoor	BB-Meth1-1A			BB-Meth1-2A			BB -Meth1-3A			
				410	0-21317	1-3	410-212284-9			410-212284-17			
				Wipe Green Tube			Wipe Beige Slide			Wipe Green Spinner			
	Sampling Date			3	/15/202	25	3/15/2025			3/15/2025			
Parameter	Units			Result	Q	RL	Result	Q	RL	Result	Q	RL	
Semivolatiles - 8270E SIM													
Acenaphthene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Acenaphthylene	ug/wipe	1.45	8.7	<0.12		0.50	<0.12		0.50	<0.12		0.50	
Anthracene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Benzo[a]anthracene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Benzo[a]pyrene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Benzo[b]fluoranthene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Benzo[g,h,i]perylene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Benzo[k]fluoranthene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Chrysene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Dibenz(a,h)anthracene	ug/wipe	1.45	8.7	<0.20		0.50	<0.20		0.50	<0.20		0.50	
Fluoranthene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Fluorene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
Indeno[1,2,3-cd]pyrene	ug/wipe	1.45	8.7	<0.12		0.50	<0.12		0.50	<0.12		0.50	
Naphthalene	ug/wipe	1.45	8.7	<0.20		0.50	<0.20		0.50	<0.20		0.50	
Phenanthrene	ug/wipe	1.45	8.7	<0.12		0.50	<0.12		0.50	<0.12		0.50	
Pyrene	ug/wipe	1.45	8.7	<0.10		0.50	<0.10		0.50	<0.10		0.50	
2-Methylnaphthalene	ug/wipe	1.45	8.7	<0.15		0.50	<0.15		0.50	<0.15		0.50	